Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37791477

RESUMO

Amphibians are ideal for studying visual system evolution because their biphasic (aquatic and terrestrial) life history and ecological diversity expose them to a broad range of visual conditions. Here, we evaluate signatures of selection on visual opsin genes across Neotropical anurans and focus on three diurnal clades that are well-known for the concurrence of conspicuous colors and chemical defense (i.e., aposematism): poison frogs (Dendrobatidae), Harlequin toads (Bufonidae: Atelopus), and pumpkin toadlets (Brachycephalidae: Brachycephalus). We found evidence of positive selection on 44 amino acid sites in LWS, SWS1, SWS2, and RH1 opsin genes, of which one in LWS and two in RH1 have been previously identified as spectral tuning sites in other vertebrates. Given that anurans have mostly nocturnal habits, the patterns of selection revealed new sites that might be important in spectral tuning for frogs, potentially for adaptation to diurnal habits and for color-based intraspecific communication. Furthermore, we provide evidence that SWS2, normally expressed in rod cells in frogs and some salamanders, has likely been lost in the ancestor of Dendrobatidae, suggesting that under low-light levels, dendrobatids have inferior wavelength discrimination compared to other frogs. This loss might follow the origin of diurnal activity in dendrobatids and could have implications for their behavior. Our analyses show that assessments of opsin diversification in across taxa could expand our understanding of the role of sensory system evolution in ecological adaptation.


Assuntos
Opsinas , Venenos , Animais , Opsinas/genética , Filogenia , Opsinas de Bastonetes/genética
2.
Curr Biol ; 33(16): 3409-3422.e6, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37506702

RESUMO

Bees are the most significant pollinators of flowering plants. This partnership began ca. 120 million years ago, but the uncertainty of how and when bees spread across the planet has greatly obscured investigations of this key mutualism. We present a novel analysis of bee biogeography using extensive new genomic and fossil data to demonstrate that bees originated in Western Gondwana (Africa and South America). Bees likely originated in the Early Cretaceous, shortly before the breakup of Western Gondwana, and the early evolution of any major bee lineage is associated with either the South American or African land masses. Subsequently, bees colonized northern continents via a complex history of vicariance and dispersal. The notable early absences from large landmasses, particularly in Australia and India, have important implications for understanding the assembly of local floras and diverse modes of pollination. How bees spread around the world from their hypothesized Southern Hemisphere origin parallels the histories of numerous flowering plant clades, providing an essential step to studying the evolution of angiosperm pollination syndromes in space and time.


Assuntos
Fósseis , Magnoliopsida , Abelhas/genética , Animais , Filogenia , Genômica , Magnoliopsida/genética , América do Sul
3.
Nat Commun ; 14(1): 4576, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516766

RESUMO

The assumption of an ecological limit to the number of species in a given region is frequently invoked in evolutionary studies, yet its empirical basis is remarkably meager. We explore this assumption by integrating data on geographical distributions and phylogenetic relationships of nearly six thousand terrestrial vertebrate species. In particular, we test whether sympatry with closely-related species leads to decreasing speciation rates. We introduce the concept of clade density, which is the sum of the areas of overlap between a given species and other members of its higher taxon, weighted by their phylogenetic distance. Our results showed that, regardless of the chosen taxon and uncertainty in the phylogenetic relationships between the studied species, there is no significant relationship between clade density and speciation rate. We argue that the mechanistic foundation of diversity-dependent diversification is fragile, and that a better understanding of the mechanisms driving regional species pools is sorely needed.


Assuntos
Simpatria , Filogenia , Incerteza
4.
Ecol Evol ; 13(6): e10162, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37293120

RESUMO

Food processing can exert significant evolutionary pressures on the morphological evolution of animal appendages. The ant genus Pheidole displays a remarkable degree of morphological differentiation and task specialization among its workers. Notably, there is considerable variation in head shape within worker subcastes of Pheidole, which could affect the stress patterns generated by bite-related muscle contraction. In this study, we use finite element analysis (FEA) to investigate the effect of the variation in head plane shape in stress patterns, while exploring the morphospace of Pheidole worker head shapes. We hypothesize that the plane head shapes of majors are optimized for dealing with stronger bites. Furthermore, we expect that plane head shapes at the edges of each morphospace would exhibit mechanical limitations that prevent further expansion of the occupied morphospace. We vectorized five head shapes for each Pheidole worker type located at the center and edges of the corresponding morphospaces. We conducted linear static FEA to analyze the stresses generated by mandibular closing muscle contraction. Our findings indicate that plane head shapes of majors exhibit signs of optimization to deal with stronger bites. Stresses are distinctly directed along the lateral margins of the head, following the direction of muscle contraction, whereas the stresses on the plane head shapes of minors tend to concentrate around the mandibular articulations. However, the comparatively higher stress levels observed on majors' plane head shapes suggest a demand for cuticular reinforcement, like increased cuticle thickness or sculpturing pattern. Our results align with the expectations regarding the main colony tasks performed by each worker subcaste, and we find evidence of biomechanical limitations on extreme plane head shapes for majors and minors.

5.
PeerJ ; 11: e15500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361043

RESUMO

Understanding the mechanisms driving community assembly has been a major focus of ecological research for nearly a century, yet little is known about these mechanisms in commensal communities, particularly with respect to their historical/evolutionary components. Here, we use a large-scale dataset of 4,440 vascular plant species to explore the relationship between the evolutionary distinctiveness (ED) (as measured by the 'species evolutionary history' (SEH)) of host species and the phylogenetic diversity (PD) of their associated epiphyte species. Although there was considerable variation across hosts and their associated epiphyte species, they were largely unrelated to host SEH. Our results mostly support the idea that the determinants of epiphyte colonization success might involve host characteristics that are unrelated to host SEH (e.g., architectural differences between hosts). While determinants of PD of epiphyte assemblages are poorly known, they do not appear to be related to the evolutionary history of host species. Instead, they might be better explained by neutral processes of colonization and extinction. However, the high level of phylogenetic signal in epiphyte PD (independent of SEH) suggests it might still be influenced by yet unrecognized evolutionary determinants. This study highlights how little is still known about the phylogenetic determinants of epiphyte communities.


Assuntos
Evolução Biológica , Traqueófitas , Filogenia , Simbiose , Especificidade de Hospedeiro
6.
Proc Biol Sci ; 289(1984): 20221641, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36476002

RESUMO

The genus Sinocyclocheilus, comprising a large radiation of freshwater cavefishes, are well known for their presence of regressive features (e.g. variable eye reduction). Fewer constructive features are known, such as the expansion of the lateral line system (LLS), which is involved in detecting water movements. The precise relationship between LLS expansion and cave adaptation is not well understood. Here, we examine morphology and LLS-mediated behaviour in Sinocyclocheilus species characterized by broad variation in eye size, habitat and geographical distribution. Using live-staining techniques and automated behavioural analyses, we examined 26 Sinocyclocheilus species and quantified neuromast organ number, density and asymmetry within a phylogenetic context. We then examined how these morphological features may relate to wall-following, an established cave-associated behaviour mediated by the lateral line. We show that most species demonstrated laterality (i.e. asymmetry) in neuromast organs on the head, often biased to the right. We also found that wall-following behaviour was distinctive, particularly among eyeless species. Patterns of variation in LLS appear to correlate with the degree of eye loss, as well as geographical distribution. This work reveals that constructive LLS evolution is convergent across distant cavefish taxa and may mediate asymmetric behavioural features that enable survival in stark subterranean microenvironments.


Assuntos
Cipriniformes , Animais , Filogenia
7.
Sci Adv ; 8(24): eabn1104, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35704574

RESUMO

Miniaturization has evolved repeatedly in frogs in the moist leaf litter environments of rainforests worldwide. Miniaturized frogs are among the world's smallest vertebrates and exhibit an array of enigmatic features. One area where miniaturization has predictable consequences is the vestibular system, which acts as a gyroscope, providing sensory information about movement and orientation. We investigated the vestibular system of pumpkin toadlets, Brachycephalus (Anura: Brachycephalidae), a clade of miniaturized frogs from Brazil. The semicircular canals of miniaturized frogs are the smallest recorded for adult vertebrates, resulting in low sensitivity to angular acceleration due to insufficient displacement of endolymph. This translates into a lack of postural control during jumping in Brachycephalus and represents a physical constraint resulting from Poiseuille's law, which governs movement of fluids within tubes.

8.
Sci Rep ; 12(1): 7728, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546343

RESUMO

Despite the long-standing interest in the organization of ant communities across elevational gradients, few studies have incorporated the evolutionary information to understand the historical processes that underlay such patterns. Through the evaluation of phylogenetic α and ß-diversity, we analyzed the structure of leaf-litter ant communities along the Cofre de Perote mountain in Mexico and evaluated whether deterministic- (i.e., habitat filtering, interspecific competition) or stochastic-driven processes (i.e., dispersal limitation) were driving the observed patterns. Lowland and some highland sites showed phylogenetic clustering, whereas intermediate elevations and the highest site presented phylogenetic overdispersion. We infer that strong environmental constraints found at the bottom and the top elevations are favoring closely-related species to prevail at those elevations. Conversely, less stressful climatic conditions at intermediate elevations suggest interspecific interactions are more important in these environments. Total phylogenetic dissimilarity was driven by the turnover component, indicating that the turnover of ant species along the mountain is actually shifts of lineages adapted to particular locations resembling their ancestral niche. The greater phylogenetic dissimilarity between communities was related to greater temperature differences probably due to narrow thermal tolerances inherent to several ant lineages that evolved in more stable conditions. Our results suggest that the interplay between environmental filtering, interspecific competition and habitat specialization plays an important role in the assembly of leaf-litter ant communities along elevational gradients.


Assuntos
Formigas , Animais , Biodiversidade , Evolução Biológica , Ecossistema , México , Filogenia
9.
Commun Biol ; 5(1): 347, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35411020

RESUMO

Large diversifications of species are known to occur unevenly across space and evolutionary lineages, but the relative importance of their driving mechanisms, such as climate, ecological opportunity and key evolutionary innovations (KEI), remains poorly understood. Here, we explore the remarkable diversification of rhacophorid frogs, which represent six percent of global amphibian diversity, utilize four distinct reproductive modes, and span a climatically variable area across mainland Asia, associated continental islands, and Africa. Using a complete species-level phylogeny, we find near-constant diversification rates but a highly uneven distribution of species richness. Montane regions on islands and some mainland regions have higher phylogenetic diversity and unique assemblages of taxa; we identify these as cool-wet refugia. Starting from a centre of origin, rhacophorids reached these distant refugia by adapting to new climatic conditions ('niche evolution'-dominant), especially following the origin of KEIs such as terrestrial reproduction (in the Late Eocene) or by dispersal during periods of favourable climate ('niche conservatism'-dominant).


Assuntos
Anuros , Reprodução , Animais , Anuros/genética , Ilhas , Filogenia , Filogeografia
10.
PLoS One ; 17(4): e0266275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35385515

RESUMO

Direct interactions among species are only possible if there is some overlap in their geographical distributions. However, despite intense focus of macroecological research on species geographical ranges, relatively little theoretical and empirical work has been done on the evolution of range overlap. In this study we explore a simple model of range overlap based on a log-normal distribution of species range sizes along a one-dimensional domain, with or without absorbing boundary conditions. In particular, we focus on the mean and variance of range overlap distributions, as well as the topology of the resulting overlap networks with respect to their degree distribution, evenness, and betweenness scores. According to the model, there is an approximately linear relationship between many aspects of the distribution of range overlaps and their underlying species distributions, such as their mean and variance. However, the expected mean number of non-zero range overlaps for a given species varied from linear to convex depending on the variance of the underlying geographical range distribution. The expected topology of range overlap networks varied substantially depending on the mean and variance in the corresponding geographical distributions, particularly in the case of the degree and closeness distributions. Finally, we test the expectations of our model against five datasets of altitudinal distributions of Neotropical birds. We found strong departures from the expectations based on our model, which could potentially result from phylogenetic niche conservatism related to altitudinal gradients in environmental conditions, or from the asymmetric colonization of mountains by species from lowlands. Potential applications of range overlap networks to a variety of ecological and evolutionary phenomena are discussed.


Assuntos
Aves , Ecossistema , Animais , Filogenia , Filogeografia
11.
Mol Phylogenet Evol ; 168: 107400, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35031467

RESUMO

Troglomorphism-any morphological adaptation enabling life to the constant darkness of caves, such as loss of pigment, reduced eyesight or blindness, over-developed tactile and olfactory organs-has long intrigued biologists. However, inferring the proximate and ultimate mechanisms driving the evolution of troglomorphism (stygomorphism) in freshwater fish requires a sound understanding of the evolutionary relationships between surface and stygomorphic lineages. We use Restriction Site Associated DNA Sequencing (RADseq) to better understand the evolution of the Sinocyclocheilus fishes of China. With a remarkable array of derived stygomorphic traits, they comprise the largest cavefish diversification in the world, emerging as a multi-species model system to study evolutionary novelty. We sequenced a total of 120 individuals throughout the Sinocyclocheilus distribution. The data comprised a total of 646,497 bp per individual, including 4378 loci and 67,983 SNPs shared across a minimum of 114 individuals at a given locus. Phylogenetic analyses using either the concatenated RAD loci (RAxML) or the SNPs under a coalescent model (SVDquartets, SNAPP) showed a high degree of congruence with similar topologies and high node support (>95 for most nodes in the phylogeny). The major clades recovered conform to a pattern previously established using Sanger-based mt-DNA sequences, with a few notable exceptions. We now recognize six major clades in this group, elevating the blind cavefish S. tianlinensis and the micro-eyed S. microphthalmus as two new distinct clades due to their deep divergence from other clades. PCA plots of the SNP data also support the recognition of six major clusters of species congruent with the identified clades in ordination space. A Bayes factor delimitation (BFD) analysis showed support for 21 species, recognizing 19 previously described species and two putative new cryptic ones. Two species whose identities were previously disputed, S. furcodorsalis and S. tianeensis, are supported here as distinct species. In addition, our multi-species calibrated tree in SNAPP suggests that the genus Sinocyclocheilus originated around 10.16 Mya, with most speciation events occurring in the last 2 Mya, likely favored by the uplift of the Qinghai-Tibetan Plateau and cave occupation induced by climate-driven aridification during this period. These results provide a firm basis for future comparative studies on the evolution of Sinocyclocheilus and its adaptations to cave life.


Assuntos
Evolução Biológica , Cavernas , Cyprinidae , Filogenia , Animais , Teorema de Bayes , China , Cyprinidae/classificação , Escuridão , Polimorfismo de Nucleotídeo Único
12.
Ecol Evol ; 11(11): 6104-6118, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141206

RESUMO

Ants use their mandibles for a wide variety of tasks related to substrate manipulation, brood transport, food processing, and colony defense. Due to constraints involved in colony upkeep, ants evolved a remarkable diversity of mandibular forms, often related to specific roles such as specialized hunting and seed milling. Considering these varied functional demands, we focused on understanding how the mandible and head shape vary within and between Pheidole subcastes. Using x-ray microtomography and 3D geometric morphometrics, we tested whether these structures are integrated and modular, and how ecological predictors influenced these features. Our results showed that mandible and head shape of majors and minor workers tend to vary from robust to slender, with some more complex changes related to the mandibular base. Additionally, we found that head and mandible shapes are characterized by a high degree of integration, but with little correlation with feeding and nesting habits. Our results suggest that a combination of structural (allometric) constraints and the behavioral flexibility conferred by subcaste dimorphism might largely buffer selective pressures that would otherwise lead to a fine-tuning between ecological conditions and morphological adaptation.

13.
J R Soc Interface ; 18(179): 20210318, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34102082

RESUMO

Ants show remarkable ecological and evolutionary success due to their social life history and division of labour among colony members. In some lineages, the worker force became subdivided into morphologically distinct individuals (i.e. minor versus major workers), allowing for the differential performance of particular roles in the colony. However, the functional and ecological significance of these morphological differences are not well understood. Here, we applied finite element analysis (FEA) to explore the biomechanical differences between major and minor ant worker mandibles. Analyses were carried out on mandibles of two Pheidole species, a dimorphic ant genus. We tested whether major mandibles evolved to minimize stress when compared to minors using combinations of the apical tooth and masticatory margin bites under strike and pressure conditions. Majors performed better in pressure conditions yet, contrary to our expectations, minors performed better in strike bite scenarios. Moreover, we demonstrated that even small morphological differences in ant mandibles might lead to substantial differences in biomechanical responses to bite loading. These results also underscore the potential of FEA to uncover biomechanical consequences of morphological differences within and between ant workers.


Assuntos
Formigas , Animais , Evolução Biológica , Humanos , Mandíbula
14.
Zookeys ; 1033: 35-62, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33958919

RESUMO

The taxonomic boundaries of many Neotropical ant species of the genus Tapinoma are still unclear. Tapinoma atriceps and T. atriceps breviscapum are two morphologically similar taxa which occur sympatrically in the southern Atlantic Forest of Brazil. Some characters such as the scape length and head shape suggest that these taxa may be different species. We used DNA analysis and morphological evidence, including scanning electron microscopy, to evaluate the taxonomic validity of these taxa. We found distinct morphological characteristics that allow separating them as two different species, Tapinoma atriceps and Tapinoma breviscapum status novo, and this decision is supported by the DNA results, where Tapinoma atriceps was recovered as a lineage independent of T. breviscapum.

15.
Zootaxa ; 4964(1): zootaxa.4964.1.12, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33903537

RESUMO

The Neotropical genus Scinax Wagler currently comprises 127 species of small treefrogs distributed from southern Mexico to Argentina and Uruguay, including some islands such as Trinidad and Tobago, and St. Lucia (Frost 2020). Two major clades are recognized within Scinax, the S. catharinae and the S. ruber clades. The former is composed of two species groups, the S. catharinae and the S. perpusillus groups (Faivovich 2002; Faivovich et al. 2005). The S. perpusillus species group currently comprises 13 species: S. alcatraz (Lutz); S. arduous Peixoto; S. atratus (Peixoto); S. belloni Faivovich, Gasparini Haddad; S. cosenzai Lacerda, Peixoto Feio; S. faivovichi Brasileiro, Oyamaguchi Haddad; S. insperatus Silva Alves-Silva; S. littoreus (Peixoto); S. melloi (Peixoto), S. peixotoi Brasileiro, Haddad, Sawaya Martins; S. perpusillus (Lutz Lutz); S. tupinamba Silva Alves-Silva; and S. v-signatus (Lutz). These species are endemic of the Brazilian Atlantic Forest and are recognized by their intimate association with bromeliads (Fig. 1), in which adults breed and lay their eggs, and tadpoles develop (Peixoto 1987, 1995; Alves-Silva Silva 2009).


Assuntos
Anuros , América , Animais , Anuros/anatomia & histologia , Anuros/classificação , Larva/anatomia & histologia , Boca/anatomia & histologia , Faringe/anatomia & histologia , Especificidade da Espécie , Clima Tropical
16.
PeerJ ; 9: e10983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717704

RESUMO

BACKGROUND: The flea toad Brachycephalus sulfuratus was recently described from southeastern and southern Brazil. In its description, the authors overlooked previous records of flea toads that had been identified as "Brachycephalus sp. nov." and B. hermogenesi occurring in the same regions, which could suggest the possibility of up to three flea toads coexisting in southern Brazil. In addition, B. sulfuratus is characterized by substantial phenotypic variability, to an extent that compromises its current diagnosis with respect to its congener B. hermogenesi. Therefore, the current state-of-affairs regarding the geographical distribution of these two species and the identification of previously known populations is hitherto uncertain. Our goals are to reassess previous records of flea toads attributable to B. hermogenesi, B. sulfuratus and "Brachycephalus sp. nov.", considering the description of B. sulfuratus, and to review the diagnosis of B. sulfuratus. METHODS: A critical analysis of the species identity of flea toad specimens attributable to B. hermogenesi, B. sulfuratus, or to a potentially undescribed species from southeastern and southern Brazil was based either on the analysis of morphology or on their advertisement calls. These analyses include our independent examinations of specimens and, when not possible, examinations of published descriptions. To allow for a consistent comparison of advertisement calls between B. hermogenesi and B. sulfuratus, we made recordings of both species, including in the type locality of the former. RESULTS: We found that morphological and call characters originally proposed as diagnostic for B. sulfuratus in relation to B. hermogenesi vary intraspecifically. Live individuals with ventral yellow spots correspond to B. sulfuratus; individuals without yellow spots can be either B. sulfuratus or B. hermogenesi. In preservative, they are indistinguishable. Previous records of Brachycephalus sp. nov. correspond to B. sulfuratus. We propose that the reduced number of notes per call and the presence of only isolated notes in the call of B. sulfuratus, as opposed to a high number of notes per call with isolated notes and note groups in the call of B. hermogenesi, as the only diagnostic characters between them. Regarding their distributions and based in our assessment, only B. sulfuratus occurs in southern Brazil, without any overlap with B. hermogenesi. There is a narrow gap between the distributions of these species around the southeast of the city of São Paulo. Our revision also revealed that some records previously attributed to B. hermogenesi in Rio de Janeiro and north São Paulo represent a distinct, unidentified flea toad that is not B. sulfuratus. Both species occur side by side in Corcovado, São Paulo, a locality from where five paratypes of B. hermogenesi were obtained. Biogeographic events that might have led to vicariance between B. hermogenesi and B. sulfuratus are discussed.

17.
BMC Ecol Evol ; 21(1): 45, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731021

RESUMO

BACKGROUND: Natural model systems are indispensable for exploring adaptations in response to environmental pressures. Sinocyclocheilus of China, the most diverse cavefish clade in the world (75 species), provide unique opportunities to understand recurrent evolution of stereotypic traits (such as eye loss and sensory expansion) in the context of a deep and diverse phylogenetic group. However, they remain poorly understood in terms of their morphological evolution. Therefore, we explore key patterns of morphological evolution, habitat utilization and geographic distribution in these fishes. RESULTS: We constructed phylogenies and categorized 49 species based on eye-related condition (Blind, Micro-eyed, and Normal-eyed), habitat types (Troglobitic-cave-restricted; Troglophilic-cave-associated; Surface-outside caves) and existence of horns. Geometric-morphometric analyses show Normal-eyed morphs with fusiform shapes segregating from Blind/Micro-eyed deeper bodied morphs along the first principal-component axis; second axis accounts for shape complexity related to horns. The body shapes showed a significant association with eye-related condition and horn, but not habitat types. Ancestral reconstructions suggest at least three independent origins of Blind morphs, each with different levels of modification in relation to their ancestral Normal-eyed morphs; Sinocyclocheilus are also pre-adapted for cave dwelling. Our geophylogeny shows an east-to-west diversification spanning Pliocene and Pleistocene, with early-diversifying Troglobitic species dominating subterranean habitats of karstic plains whereas predominantly Surface forms inhabit hills to the west. Evolutionary rates analyses suggest that lineages leading to Blind morphs were characterized by significant rate shifts, such as a slowdown in body size evolution and a 5-20 fold increase in rate of eye regression, possibly explained by limited resource availability. Body size and eye size have undergone reversals, but not horns, a trait entailing considerable time to form. CONCLUSIONS: Sinocyclocheilus occupied cave habitats in response to drying associated with aridification of China during late Miocene and the Pliocene. The prominent cave-adaptations (eye-regression, horn-evolution) occur in clades associated with the extensive subterranean cave system in Guangxi and Guizhou provinces. Integration of morphology, phylogeny, rate analyses, molecular-dating and distribution show not only several remarkable patterns of evolution, but also interesting exceptions to these patterns signifying the diversification of Sinocyclocheilus as an invaluable model system to explore evolutionary novelty.


Assuntos
Evolução Biológica , Cyprinidae , Animais , Cavernas , China , Filogenia
18.
Evolution ; 74(2): 434-446, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31503329

RESUMO

Animal synchrony is found in phylogenetically distant animal groups, indicating behavioral adaptations to different selective pressures and in different signaling modalities. A notable example of synchronous display is found in fiddler crabs in that males wave their single enlarged claw during courtship. They present species-specific signals, which are composed of distinctive movement signatures. Given that synchronous waving has been reported for several fiddler crab species, the display pattern could influence the ability of a given species to sufficiently adjust wave timing to allow for synchrony. In this study, we quantified the wave displays of fiddler crabs to predict their synchronous behavior. We combined this information with the group's phylogenetic relationships to trace the evolution of display synchrony in an animal taxon. We found no phylogenetic signal in interspecific variation in predicted wave synchrony, which mirrors the general nonphylogenetic pattern of synchrony across animal taxa. Interestingly, our analyses show that the phenomenon of synchronization stems from the peculiarities of display pattern, mating systems, and the complexity of microhabitats. This is the first study to combine mathematical simulations and phylogenetic comparative methods to reveal how ecological factors and the mechanics of animal signals affect the evolution of the synchronous phenomena.


Assuntos
Comunicação Animal , Evolução Biológica , Braquiúros/fisiologia , Traços de História de Vida , Comportamento Sexual Animal , Animais , Austrália , Brasil , Ecossistema , Masculino , Panamá , Filogenia
19.
Ecol Evol ; 9(20): 11734-11741, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31695883

RESUMO

There is a growing recognition that spatial scale is important for understanding ecological processes shaping community membership, but empirical evidence on this topic is still scarce. Ecological processes such as environmental filtering can decrease functional differences among species and promote functional clustering of species assemblages, whereas interspecific competition can do the opposite. These different ecological processes are expected to take place at different spatial scales, with competition being more likely at finer scales and environmental filtering most likely at coarser scales. We used a comprehensive dataset on species assemblages of a dominant ant genus, Pheidole, in the Cerrado (savanna) biodiversity hotspot to ask how functional richness relates to species richness gradients and whether such relationships vary across spatial scales. Functional richness of Pheidole assemblages decreased with increasing species richness, but such relationship did not vary across different spatial scales. Species were more functionally dissimilar at finer spatial scales, and functional richness increased less than expected with increasing species richness. Our results indicate a tighter packing of the functional volume as richness increases and point out to a primary role for environmental filtering in shaping membership of Pheidole assemblages in Neotropical savannas. OPEN RESEARCH BADGES: This article has been awarded Open Materials, Open Data, Preregistered Research Designs Badges. All materials and data are publicly accessible via the Open Science Framework at https://doi.org/10.5061/dryad.31201jg.

20.
Mol Phylogenet Evol ; 141: 106627, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31539606

RESUMO

The advent of next-generation sequencing allows researchers to use large-scale datasets for species delimitation analyses, yet one can envision an inflection point where the added accuracy of including more loci does not offset the increased computational burden. One alternative to including all loci could be to prioritize the analysis of loci for which there is an expectation of high informativeness. Here, we explore the issue of species delimitation and locus selection with montane species from two anuran genera that have been isolated in sky islands across the southern Brazilian Atlantic Forest: Melanophryniscus (Bufonidae) and Brachycephalus (Brachycephalidae). To delimit species, we obtained genetic data using target enrichment of ultraconserved elements from 32 populations (13 for Melanophryniscus and 19 for Brachycephalus), and we were able to create datasets that included over 800 loci with no missing data. We ranked loci according to their number of parsimony-informative sites, and we performed species delimitation analyses using BPP with the most informative 10, 20, 40, 80, 160, 320, and 640 loci. We identified three types of phylogenetic node: nodes with either consistently high or low support regardless of the number of loci or their informativeness and nodes that were initially poorly supported where support became stronger as we included more data. When viewed across all sensitivity analyses, our results suggest that the current species richness in both genera is likely underestimated. In addition, our results show the effects of different sampling strategies on species delimitation using phylogenomic datasets.


Assuntos
Anuros/classificação , Anuros/genética , Florestas , Filogenia , Animais , Oceano Atlântico , Brasil , Filogeografia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...